This guide demonstrates multiple strategies for handling missing values in environmental datasets using the missing_data
module.
from ai_aquatica.missing_data import (
fill_missing_with_mean,
fill_missing_with_median,
fill_missing_with_mode,
fill_missing_with_knn,
fill_missing_with_regression,
fill_missing_with_autoencoder
)
import pandas as pd
import numpy as np
data = pd.DataFrame({
'pH': [7.1, 6.9, np.nan, 7.3, 7.0],
'NO3': [1.5, np.nan, 1.7, 1.6, 1.8]
})
mean_filled = fill_missing_with_mean(data)
median_filled = fill_missing_with_median(data)
mode_filled = fill_missing_with_mode(data)
knn_filled = fill_missing_with_knn(data, n_neighbors=3)
regression_filled = fill_missing_with_regression(data)
autoencoder_filled = fill_missing_with_autoencoder(data)