AI-Aquatica

πŸ“Š Usage – Statistical Analysis (AI-Aquatica)

This guide describes how to perform basic and advanced statistical analyses using the statistical_analysis module.


1. πŸ“¦ Importing

from ai_aquatica.statistical_analysis import (
    calculate_basic_statistics,
    plot_distribution,
    plot_boxplot,
    calculate_correlation_matrix,
    perform_anova,
    decompose_time_series
)

2. πŸ“ˆ Sample dataset

import pandas as pd
import numpy as np

data = pd.DataFrame({
    'NO3': [1.5, 1.7, 1.6, 1.8, 1.4],
    'pH': [7.0, 6.9, 7.1, 7.2, 6.8],
    'Region': ['A', 'A', 'B', 'B', 'A']
})

3. πŸ”Ή Basic statistics

stats = calculate_basic_statistics(data[['NO3', 'pH']])
print(stats)

4. πŸ“Š Visualizations

Histogram + KDE

plot_distribution(data, 'NO3')

Boxplot

plot_boxplot(data, 'pH')

5. πŸ”— Correlation matrix

corr_matrix = calculate_correlation_matrix(data[['NO3', 'pH']])
print(corr_matrix)

6. πŸ“Š ANOVA (Analysis of Variance)

anova_results = perform_anova(data, 'NO3 ~ Region')
print(anova_results)

7. ⏱️ Time series decomposition

# Requires datetime index and regular time steps
time_data = pd.DataFrame({
    'date': pd.date_range(start='2023-01-01', periods=12, freq='M'),
    'NO3': np.random.rand(12)
}).set_index('date')

decomposition = decompose_time_series(time_data, 'NO3', model='additive', freq=12)

🧠 Notes