AI-Aquatica

📊 Usage – Data Visualization (AI-Aquatica)

This guide presents how to use the visualization module to create basic and advanced plots for water quality and environmental datasets.


1. 📦 Importing

from ai_aquatica.visualization import (
    plot_line,
    plot_bar,
    plot_pie,
    plot_scatter,
    plot_heatmap,
    plot_pca,
    plot_tsne,
    plot_interactive_bubble
)

2. 📈 Sample dataset

import pandas as pd
import numpy as np

data = pd.DataFrame({
    'feature1': np.random.randn(100),
    'feature2': np.random.randn(100),
    'category': np.random.choice(['A', 'B', 'C'], 100),
    'size': np.random.randint(1, 100, 100)
})

3. 📉 Basic visualizations

Line plot

plot_line(data, 'feature1', 'feature2')

Bar plot

plot_bar(data, 'category', 'size')

Pie chart

plot_pie(data, 'category')

Scatter plot

plot_scatter(data, 'feature1', 'feature2')

Heatmap of correlations

plot_heatmap(data[['feature1', 'feature2']])

4. 📊 Advanced visualizations

PCA (Principal Component Analysis)

plot_pca(data[['feature1', 'feature2']])

t-SNE (Dimensionality Reduction)

plot_tsne(data[['feature1', 'feature2']])

Interactive Bubble Chart

plot_interactive_bubble(data, 'feature1', 'feature2', 'size', 'category')

🧠 Notes