smartbuildsim.cli.app assembles the Typer application that orchestrates each
module from configuration files. Install the package (pip install -e .[dev])
to expose the smartbuildsim executable.
| Command | Description |
|---|---|
smartbuildsim |
Shows available scenario presets when invoked without a sub-command. |
smartbuildsim bim init |
Writes a BIM schema to disk, optionally pulling from a scenario preset. |
smartbuildsim data generate |
Generates deterministic telemetry according to the active scenario/config. |
smartbuildsim model forecast |
Trains a forecasting model and persists the estimator plus predictions. |
smartbuildsim model anomalies |
Runs IsolationForest-based anomaly detection and writes annotated CSVs. |
smartbuildsim cluster run |
Performs KMeans clustering over zone-level aggregates. |
smartbuildsim rl train |
Trains the Q-learning thermostat policy and saves the Q-table. |
smartbuildsim viz plot |
Produces annotated Matplotlib plots with optional anomaly/cluster overlays. |
Each command honours overrides passed via --override key=value which map onto
nested YAML keys through smartbuildsim.utils.helpers.apply_overrides.
The following shell snippet reproduces the workflow from
examples/scripts/run_example.py using the provided
examples/configs/default.yaml configuration:
smartbuildsim bim init outputs/schema.yaml --scenario office-small
smartbuildsim data generate examples/configs/default.yaml
smartbuildsim model forecast examples/configs/default.yaml
smartbuildsim model anomalies examples/configs/default.yaml
smartbuildsim cluster run examples/configs/default.yaml
smartbuildsim rl train examples/configs/default.yaml
smartbuildsim viz plot examples/configs/default.yaml \
--anomalies-path outputs/anomalies.csv --clusters-path outputs/clusters.csv
Artifacts are written under outputs/ (configurable via YAML) and can be
analysed further using the Python APIs documented throughout the reference
section.