smartbuildsim.models offers four focused modelling workflows built on top of
scikit-learn and NumPy utilities:
Each workflow consumes the feature-engineered datasets described in
Feature Engineering and many are orchestrated together in
examples/scripts/run_example.py.
The sections below summarise the shared workflow stages before diving into each specialised page:
smartbuildsim data generate or the
Python helpers in smartbuildsim.data.generator. W razie potrzeby ustaw
parametry generatora (np. anomaly_chance), aby wymusić sygnał do benchmarków.FeatureConfig from
smartbuildsim.features.engineering.smartbuildsim.evaluation.benchmark, który
udostępnia wielokrotne losowania, testy istotności oraz analizę wrażliwości na
skalowanie jednostek (szczegóły w Benchmarkach).smartbuildsim viz plot to confirm the
effect of the trained models.Continue to the dedicated pages for configuration details and runnable examples.