SynthPred.jl is a Julia package for synthetic data analysis, advanced imputation (ARIMA, RNN), AutoML, and ensemble modeling.
using Pkg
Pkg.add(url="https://github.com/TyMill/SynthPred.jl")
using SynthPred
using CSV, DataFrames
# Load training data
df = CSV.read("data/example.csv", DataFrame)
# Explore data
SynthPred.Exploration.describe_data(df)
# Impute missing values (e.g. RNN strategy)
df_clean, report = SynthPred.Imputer.impute_advanced(df, "rnn", threshold=0.1)
SynthPred.Imputer.save_imputation_report(report, "reports/imputation_report.json")
# Run AutoML pipeline
top_models, scores = SynthPred.AutoML.run_automl(df_clean, :target)
X = select(df_clean, Not(:target))
y = df_clean[:, :target]
ensemble = SynthPred.AutoML.blend_top_models(top_models, X, y)
# Predict on new data
Xnew = CSV.read("data/new_data.csv", DataFrame)
preds = SynthPred.AutoML.predict_ensemble(ensemble, Xnew)
println(preds)
Full documentation is available at: https://your-username.github.io/SynthPred.jl
SynthPred/
โโโ Project.toml
โโโ src/
โ โโโ SynthPred.jl
โ โโโ Exploration.jl
โ โโโ Imputer.jl
โ โโโ AutoML.jl
โโโ data/
โ โโโ example.csv
โ โโโ new_data.csv
โโโ reports/
โ โโโ imputation_report.json
โโโ docs/
โ โโโ src/index.md
โโโ test/
โ โโโ runtests.jl
โโโ main.jl
JLD2
, BSON
)Pull requests are welcome! For major changes, please open an issue first to discuss your proposal.
MIT License ยฉ 2025 Tymoteusz Miller
๐ง me@tymoteuszmiller.dev
Built with โค๏ธ in Julia for real-world ML and scientific discovery.