SynthPred

SynthPred.jl

Docs

DOI

GitHub all releases

SynthPred.jl is a Julia package for synthetic data analysis, advanced imputation (ARIMA, RNN), AutoML, and ensemble modeling.


๐Ÿš€ Features


๐Ÿ“ฆ Installation

using Pkg
Pkg.add(url="https://github.com/TyMill/SynthPred.jl")

๐Ÿงช Quick Example

using SynthPred
using CSV, DataFrames

# Load training data
df = CSV.read("data/example.csv", DataFrame)

# Explore data
SynthPred.Exploration.describe_data(df)

# Impute missing values (e.g. RNN strategy)
df_clean, report = SynthPred.Imputer.impute_advanced(df, "rnn", threshold=0.1)
SynthPred.Imputer.save_imputation_report(report, "reports/imputation_report.json")

# Run AutoML pipeline
top_models, scores = SynthPred.AutoML.run_automl(df_clean, :target)
X = select(df_clean, Not(:target))
y = df_clean[:, :target]
ensemble = SynthPred.AutoML.blend_top_models(top_models, X, y)

# Predict on new data
Xnew = CSV.read("data/new_data.csv", DataFrame)
preds = SynthPred.AutoML.predict_ensemble(ensemble, Xnew)
println(preds)

๐Ÿ“š Documentation

Full documentation is available at: https://your-username.github.io/SynthPred.jl


๐Ÿงช Project Structure

SynthPred/
โ”œโ”€โ”€ Project.toml
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ SynthPred.jl
โ”‚   โ”œโ”€โ”€ Exploration.jl
โ”‚   โ”œโ”€โ”€ Imputer.jl
โ”‚   โ””โ”€โ”€ AutoML.jl
โ”œโ”€โ”€ data/
โ”‚   โ”œโ”€โ”€ example.csv
โ”‚   โ””โ”€โ”€ new_data.csv
โ”œโ”€โ”€ reports/
โ”‚   โ””โ”€โ”€ imputation_report.json
โ”œโ”€โ”€ docs/
โ”‚   โ””โ”€โ”€ src/index.md
โ”œโ”€โ”€ test/
โ”‚   โ””โ”€โ”€ runtests.jl
โ””โ”€โ”€ main.jl

๐Ÿ“Œ Roadmap


๐Ÿค Contributing

Pull requests are welcome! For major changes, please open an issue first to discuss your proposal.


๐Ÿ“œ License

MIT License ยฉ 2025 Tymoteusz Miller


๐Ÿ“ฌ Contact

๐Ÿ“ง me@tymoteuszmiller.dev


Built with โค๏ธ in Julia for real-world ML and scientific discovery.